Matematika

Pertanyaan

Integral (10x3-1)(5x4-2x+9)^3 dx

2 Jawaban

  • pakai integral substitusi
    misalkan
    5x^4 - 2x + 9 = u
    (20x^3 - 2) dx = du
    2(10x^3 - 1) dx = du
    dx = du / 2(10x^3 - 1)

    (10x^3 - 1)(5x^4 - 2x + 9)^3 dx
    ganti dengan u dan du
    (10x^3 - 1) u^3 du / 2(10x^3 - 1)
    = {(10x^3-1)/2(10x^3-1)} u^3 du
    = (1/2) u^3 du
    baru integral kan
    = (1/2)(1/(3+1)) u^(3+1) + C
    = (1/2)(1/4) u^4 + C
    = (1/8) u^4 + C
    kembalikan u ke x
    = (1/8)(5x^4 - 2x + 9)^4 + C
  • Integral substitusi
    ∫ (10x³ - 1) (5x⁴ - 2x + 9)³ dx
    u = 5x⁴ - 2x + 9
    du / dx = 20x³ - 2 → dx = du / (20x³ - 2)
    = ∫ (10x³ - 1) u³ du / (20x³ - 2)
    = ∫ (10x³ - 1) u³ du / [2 (10x³ - 1)]
    = 1/2 ∫ u³ du
    = 1/2 (1/4 u⁴) + C
    = 1/8 (5x⁴ - 2x + 9)⁴ + C

Pertanyaan Lainnya